Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Diabetes Investig ; 14(1): 102-110, 2023 Jan.
Article En | MEDLINE | ID: mdl-36208067

AIMS/INTRODUCTION: Hypertriglyceridemia is common in patients with diabetes. Although the fatty acid (FA) composition of triglycerides (TGs) is suggested to be related to the pathology of diabetes and its complications, changes in the fatty acid composition caused by diabetes treatment remain unclear. This study aimed to identify short-term changes in the fatty acid composition of plasma triglycerides after diabetes treatment. MATERIALS AND METHODS: This study was a sub-analysis of a prospective observational study of patients with type 2 diabetes aged between 20 and 75 years who were hospitalized to improve glycemic control (n = 31). A lipidomic analysis of plasma samples on the 2nd and 16th hospital days was conducted by supercritical fluid chromatography coupled with mass spectrometry. RESULTS: In total, 104 types of triglycerides with different compositions were identified. Most of them tended to decrease after treatment. In particular, triglycerides with a lower carbon number and fewer double bonds showed a relatively larger reduction. The inclusion of FA 14:0 (myristic acid), as a constituent of triglyceride, was significantly associated with a more than 50%, and statistically significant, reduction (odds ratio 39.0; P < 0.001). The total amount of FA 14:0 as a constituent of triglycerides also decreased significantly, and its rate of decrease was the greatest of all the fatty acid constituents. CONCLUSIONS: A 2 week comprehensive risk management for diabetes resulted in decreased levels of plasma triglycerides and a change in the fatty acid composition of triglycerides, characterized by a relatively large reduction in FA 14:0 as a constituent of triglycerides.


Chromatography, Supercritical Fluid , Diabetes Mellitus, Type 2 , Humans , Young Adult , Adult , Middle Aged , Aged , Fatty Acids , Triglycerides , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Lipidomics , Mass Spectrometry , Risk Management
2.
Biochem J ; 479(3): 425-444, 2022 02 11.
Article En | MEDLINE | ID: mdl-35048967

There has been a concern that sodium-glucose cotransporter 2 (SGLT2) inhibitors could reduce skeletal muscle mass and function. Here, we examine the effect of canagliflozin (CANA), an SGLT2 inhibitor, on slow and fast muscles from nondiabetic C57BL/6J mice. In this study, mice were fed with or without CANA under ad libitum feeding, and then evaluated for metabolic valuables as well as slow and fast muscle mass and function. We also examined the effect of CANA on gene expressions and metabolites in slow and fast muscles. During SGLT2 inhibition, fast muscle function is increased, as accompanied by increased food intake, whereas slow muscle function is unaffected, although slow and fast muscle mass is maintained. When the amount of food in CANA-treated mice is adjusted to that in vehicle-treated mice, fast muscle mass and function are reduced, but slow muscle was unaffected during SGLT2 inhibition. In metabolome analysis, glycolytic metabolites and ATP are increased in fast muscle, whereas glycolytic metabolites are reduced but ATP is maintained in slow muscle during SGLT2 inhibition. Amino acids and free fatty acids are increased in slow muscle, but unchanged in fast muscle during SGLT2 inhibition. The metabolic effects on slow and fast muscles are exaggerated when food intake is restricted. This study demonstrates the differential effects of an SGLT2 inhibitor on slow and fast muscles independent of impaired glucose metabolism, thereby providing new insights into how they should be used in patients with diabetes, who are at a high risk of sarcopenia.


Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Adenosine Triphosphate/metabolism , Adenylate Kinase/biosynthesis , Adenylate Kinase/genetics , Adipose Tissue, White/drug effects , Amino Acids/metabolism , Animals , Body Weight/drug effects , Canagliflozin/pharmacology , Eating/drug effects , Fatty Acids, Nonesterified/metabolism , Gene Expression Regulation/drug effects , Gene Ontology , Glycolysis , Hand Strength , Liver/drug effects , Male , Metabolome/drug effects , Mice , Mice, Inbred C57BL , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/drug effects , Organ Size/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sodium-Glucose Transporter 2/physiology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , TOR Serine-Threonine Kinases/biosynthesis , TOR Serine-Threonine Kinases/genetics
...